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Several expressions for quantum entropy proposed in the literature are evaluated within
the Weyl–Wigner–Moyal phase-space representation of quantum mechanics, with
emphasis on some important subtle points in this approach. It has been found that the
Rényi–Süßmann entropy and its linearization are distinguished because of their
properties.
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1. INTRODUCTION

Entropy is, without any doubt, one of the most important physical concepts,
not only in thermodynamics and statistical mechanics, but also in various ar-
eas of quantum theory. It also remains to be still one of the most mysterious
quantities, especially outside the traditional phenomenological thermodynamics,
where it can be directly connected with the amount of energy that becomes
unavailable.

Information-theoretical entropy, calculated from the respective probability
distributions, plays an important role in the study of fundamental aspects of quan-
tum systems and their classical counterparts. As emphasized by Wehrl (1978)
in his well-known review article, its correct definition is only possible within the
framework of quantum mechanics, because classicallyall probability distributions
are allowed, including those which are not physically realizable.

The situation could be improved by employing one of the various possible
phase-space representations of quantum mechanics (QM), where quantum and
classical concepts are put on equal footing. But as usual, there is a price tag at-
tached to this convenient solution. Namely, the respective phase-space distribution
functions are in generalnotprobability distributions, in contrast to the classical sta-
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tistical mechanics. Moreover, the formalism involved may become arcane even for
simple systems, depending on the particular choice of phase-space representation
and the expression for entropy.

The purpose of the present paper is to evaluate some promising entropic ex-
pressions within the phase-space picture of QM, emphasizing at the same time
important subtle points in this approach. Some of these points are often neglected,
which can lead to confusion and incorrect results. As indicated in the title, our dis-
cussion will be focused on the Wigner phase-space distribution function (WDF)
and the Weyl–Wigner–Moyal (WWM) representation, both occupying a unique
position within the world of known phase-space representations of quantum me-
chanics. To make the paper self-contained, we begin with a short review of these
topics. A more elaborate overview, containing also a brief guide to some landmark
papers and an extensive reference list, could be found in Zachos, 2002.

2. THE WEYL–WIGNER–MOYAL REPRESENTATION

As in the classical statistical mechanics, the states of a quantum system and
the respective dynamical variables are represented in the WWM formalism through
the appropriate phase-space functions. The connection to the conventional operator
approach is maintained via the Weyl transform (Leaf, 1968).

aw(p, q) = h−N
∫

dτ exp

{
i

h
pτ

} 〈
q + τ

2

∣∣Â∣∣q − τ
2

〉
(1)

In consequence, phase-space functions corresponding to operator products can-
not be obtained as ordinary (pointwise) products of the respective components.
Instead, if the operator̂A corresponds to the phase-space functiona(p, q) and
B̂ corresponds tob(p, q) then ÂB̂ is represented through (a ? b)(p, q), which is
defined as follows (Narcowich and Fulling, 1986):

(a ? b)(p, q) ≡
(

2

h

)2N ∫
d P1d P2d Q1d Q2 exp

{
2i

h
(Q1P2− Q2P1)

}
×a(P1+ p, Q1+ q)b(P2+ p, Q2+ q) (2)

For sufficiently regular phase-space functions (cf. Estradaet al., 1989; Voros, 1977,
1978), the star product may be also expressed in a differential form (de Groot and
Suttorp, 1972, Groenewold, 1946).

(a ? b)(p, q) = a(p, q) exp

{
h

2i

( ←
∂

∂p

→
∂

∂q
−
←
∂

∂q

→
∂

∂p

)}
b(p, q) (3)

where the arrows indicate the side to be processed. This form is especially useful
in the case of simple polynomial or exponential phase-space functions, where
even complicated expressions involving the star product cold be quite efficiently
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evaluated in a geometrical way (Zachos, 2000). The following simple relation
involving the WWM?-product will be useful later in this paper:∫

0

dpdq(a ? b)(p, q) =
∫
0

dpdq a(p, q)b(p, q) (4)

It is evident from the above formulas that the?-product is associative, but
in general nonlocal and noncommutative. Together with the Weyl transform, the
WWM ?-product establishes an isomorphism between the algebra of operators of
the standard quantum mechanics and the algebra of phase-space function. Nonethe-
less, the WWM phase-space representation is a fully autonomous formulation of
QM, which may operate independently of the standard approach.

3. THE WIGNER DISTRIBUTION FUNCTION

The states of a system are represented in the WWM formulation through the
real-valued WDF (Wigner, 1932), which could be obtained from the respective
wavefunction as

ρw(p, q) = h−N
∫

dτ exp

{
i

h
pτ

}〈
q + τ

2

∣∣∣∣9〉〈9∣∣∣∣q − τ2
〉

(5)

Although named after Wigner, it was used in this form earlier by Dirac as a phase-
space electron density in his study of the Thomas–Fermi model (Dirac, 1930).

WDFs corresponding to stationary states could be determined independently
as solutions to the respective “star-genvalue” equations (see, e.g., Curtrightet al.,
1998; Dahl, 1983 and references therein).

hw(p, q) ? f (p, q) = f (p, q) ? hw(p, q) = E f (p, q) (6)

wherehw(p, q) denotes the Weyl transform of the Hamiltonian. This two equations
are equivalent to the stationary Schr¨odinger equation of standard QM.

The time dependence of WDF is given by the quantum Liouville equation.

i h
∂ρw

t

∂t
= hw ? ρw

t − ρw
t ? hw (7)

According to Eq. (3), the r.h.s. of Eq. (7) above could be formally split into a
contribution resulting from the classical Liouville flow{hw, ρw

t } and “quantum
corrections,” collecting the terms withexplicit h dependence. Unfortunately, be-
cause of theimplicit h dependence of WDF, these corrective terms do not always
vanish in theh→ 0 classical limit, as it could be expected.

Nevertheless, the WDFs share many features with classical phase-space dis-
tribution functions, the most important one is the possibility of calculation of



P1: FLT

International Journal of Theoretical Physics [ijtp] pp903-ijtp-468239 August 19, 2003 22:14 Style file version May 30th, 2002

1078 WlÃodarz

expectation values in the same way as in classical statistical mechanics.

〈A〉 =
∫
0

dpdq aw(p, q)ρw(p, q) (8)

But unlike to classical phase-space distribution functions, WDFs are not necessar-
ily nonnegative, and they cannot be therefore regarded as phase-space probability
densities.

Notice that the quantity
∫
0

dpdq|ρw(p, q)| may become infinite for some
normalizable WDFs, which precludes also the direct interpretation of a WDF as a
“signed” or “extended” (M¨uckenheim, 1986) probability density.

It is well known (Pool, 1966) that normalizable (i.e., square-integrable) wave
functions correspond to normalizable WDFs and vice versa. In this case:∫

0

dpdqρw(p, q) = 1 (9)

and

|ρw(p, q)| ≤
(

2

h

)N

(10)

which in combination gives immediately that the volume of the phase-space region,
where a WDF takes nonzero values, cannot be smaller than (h

2)N . This relation
is sometimes regarded as another, more illustrative formulation of the uncertainty
principle, but it could be also misleading. Namely, one can get a wrong impression
that it should be possibe to have a WDF supported on a sufficiently large but
finite “phase-space cell.” But one can prove that eactly the opposite is true:if the
support of a WDF is of finite measure, then this WDF have to be zero everywhere
(cf. Davidovic̆ and Lalovic̆, 1992; Jaming, 1998; Janssen, 1998; WlÃodarz, 1988).

Not all WDF are normalizable. A prominent example may be furnished by
the WDF describing the EPR (Einsteinet al., 1935) state

ρw
EPR(p1, p2, q1, q2) = Cδ(q1− q2+ q0)δ(p1+ p2) (11)

discussed by Bell (1987) and others (Banaszek and W´odkiewicz, 1999a,b; Cohen,
1997; Johansen, 1997) more recently. An even simpler example is given by the
WDF for a one-dimensional plane wave state.

〈x|k〉 = 1√
(2π )

exp{ikx} (12)

where the corresponding WDF can be easily obtained via Eq. (5) as (cf. Balazs
and Jennings, 1984).

ρw
k (p, q) = hδ(p− hk) (13)

One can easily verify thatρw
k (p, q) above, although singular, fulfills the con-

dition that a given phase-space functionf (p, q) should satisfy to be a WDF (cf.
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Eq. 2.19b) in Hilleryet al., 1984)∫
0

dpdq f(p, q)ρw
ψ (p, q) ≥ 0 (14)

for any WDFρw
ψ (p, q) corresponding to a pure state|ψ〉. Indeed, inserting Eq. (13)

into Eq. (14) we immediately get∫
dqρw

ψ (hk, q) = |〈hk|ψ〉|2 (15)

which is obviously nonnegative in all cases.
This result could be extended to general straight-line-supportedδ-distributions

δ(ξ1 p+ ξ2q + ξ3) (WlÃodarz, 1999). Moreover, it could be shown thatδ(ξ1 p+
ξ2q + ξ3) are the onlyδ-shaped WDFs possible, since the other would violate the
position-momentum uncertainty principle (cf. App. C in (Balazs, 1980).

4. QUANTUM ENTROPY

Going through the literature, one can find various expressions for quantum
entropy, obtained mainly through relaxing one or more constraints, which are
usually imposed on the information-theoretical entropy. For a quantum state per se,
i.e., without any measurements being involved, and represented through a density
operatorp̂, the “canonical” quantum entropy may be defined after von Neumann
(1927) as

S= −Tr(ρ̂ ln ρ̂) (16)

This expression is the only one fulfilling all the constraints contained in the
Shannon theorem (Shannon, 1948) and also some other important criteria
(Gyftopoulos and C¸ ubukçu, 1997). Moreover, in the case of a thermal ensemble
it becomes the well-known thermodynamical entropy. Therefore, it seems to be a
perfect entropic expression. But in some situations, e.g., for nonextensive physical
systems, these constraints may be too restrictive, affecting the possibility of get-
ting the correct description of such systems. The increasingly popular formalism,
introduced by Tsallis (1988) and based on the following expression for entropy:

Sq = 1− Tr(ρq)

q − 1
, q ∈ R (17)

appears to cure this problem in many cases.
The Tsallis entropySq is nonnegative, extremal at equiprobability, concave

for q > 0, but pseudoadditive.

Sq(ρA ⊗ ρB) = Sq(ρA)+ Sq(ρB)+ (1− q)Sq(ρA)Sq(ρB) (18)

It reduces to the canonical von Neumann entropy forq→ 1 : S1 ≡ S.
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Another popular family of entropic expressions are R´enyi entropies (R´enyi,
1970).

Rα = 1

1− α ln Tr(ρ̂α) (19)

known also as so-calledα-entropies (Thirring, 1980). R´enyi entropies are additive
and therfore they are filling in a sense the gap between the von Neumann and Tsallis
entropies. Namely, the Tsallis expression Eq. (17) may be seen as a linearization
of the Rényi expression Eq. (19) with respect to Tr( ˆρα).

The simplest expression for quantum entropy is definitely furnished by

S2 = 1− Tr(ρ̂2) (20)

known in the literature as linear or linearized entropy (Zureket al., 1993). This
quantity is obviously a measure of “impurity” of the quantum state, but it has
been recently used also as a succesful measure of decoherence (de Oliveiraet al.,
2001; Dodonovet al., 2000; Facchiet al., 1999, 2000, 2001; Mokarzelet al.,
2002; Watanabe, 1939), entanglement (Angeloet al., 2001; Dodonovet al., 2002;
Furuyaet al., 1998; Munroet al., 2001; Zanardiet al., 2000), complexity (L´opez-
Ruiz et al., 1995; Sugita and Aiba, 2002), and mixedness (Ghoshet al., 2001) of
quantum systems. Moreover, it is also the simplest, but fairly good approximation
of von Neumann quantum entropy in many cases.

In a recent paper, Brukner and Zeilinger (1999) defined the lack of information
or uncertainty, regarding then possible discrete outcomes from an experiment, as
a discrete version of linear entropy

U = 1−
n∑

i=1

p2
i (21)

emphasizing that this quantity refers directly to the experimental results of mutually
complementary measurements, unlike the von Neumann quantum entropy, which
is applicable when the measurements reveal a preexisting property. Therefore, the
linear entropy seems to be much more than only a mere approximation to the von
Neumann expression.

In mathematical statistics, Eq. (21) is known as the Simpson diversity index
and it has been extensively used in various studies (cf., e.g., Patil and Taillie, 1982).

5. PHASE-SPACE QUANTUM ENTROPY

The presence of the ln ˆρ term precludes an easy translation of von Neumann
quantum entropy Eq. (16) to the WWM or similar phase-space representation of
quantum mechanics, mainly because of the nonlocal star products of phase-space
distributions involved. Other expressions for quantum entropy have enormous
advantages here, especially the simplest to handle, like theS2 and R2 entropies
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in the WWM picture, where the star product could be explicitly eliminated in the
integrand, i.e.,∫

0

dpdqρw(p, q) ? ρw(p, q) ≡
∫
0

dpdq(ρw(p, q))2 (22)

by virtue of Eq. (4). Notice that this isnot a common property of all phase-
space representations, but rather an exception, equivalent to demanding that the
underlying phase-space representation isself-dual(WlÃodarz, 1994, 2001), like the
WWM one.

Hence, the expression for linear quantum entropy Eq. (20) has a direct tran-
scription to the WWM picture of the form

S2 = 1− (2πh)D
∫
0

dpdq(ρw(p, q))2 (23)

Because of its importance, the WWM linear entropy is discussed separately in the
next Section.

Another way to generate expressions for quantum entropy within a phase-
space representation of QM is to substituteclassicalphase-space probability dis-
tributions inclassicalentropic expressions through the respectivequantumphase-
space distributions, or their “smoothed” versions, in order to avoid the problems
resulting from negative or even complex values taken by the original distributions
in some representations. This in general abusive practice may lead to different
end results, which may be well-founded as well as nonsensical, depending on the
applied “smoothing” or “positivization” procedure and its physical meaning.

For example, the “coarse graining” of a WDF, performed over small phase
space cells of finite size, known from classical statistical mechanics, does not lead
in general to a nonnegative, “coarse” phase-space distribution function, in contrast
to the widespread belief (cf. WlÃodarz, 2002 and references therein). Consequently,
a “coarse-grained” phase-space quantum entropy would be in general an ill-defined
quantity, too.

A better approach, so called “smoothing,” is based on convolution of the WDF
with a properly chosen “weight function,” defined on the whole phase space. In this
case, any legitimate WDF is a perfect candidate for a weight function. Moreover, it
can be then interpreted as a “quantum ruler” representing the measuring device. The
resulting operational phase-space distributions and so-called sampling entropies
are well-defined quantities with nice properties (Buˇzeket al., 1995).

The well-known Wehrl entropy (Wehrl, 1979), defined as follows:

SW = −
∫
0

dpdqρH (p, q; κ)) ln ρH (p, q; κ) (24)

where ρH denotes the respective Husimi phase-space distribution function
parametrized with some arbitrary positive constantκ, is a prominent example
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of sampling entropy, using minimum-uncertainty states as quantum rulers. One
can prove (Beretta, 1984) that in the classical limit (h→ 0) von Neumann quan-
tum entropy becomes Wehrl “classical” entropy. Therefore, the Wehrl entropy is
often regarded as the closest quantity to the classical Boltzmann–Gibbs–Shannon
entropy and is extensively applied in various studies.

6. WWM LINEAR ENTROPY

The WWM expression for linear entropy Eq. (23) has a very simple functional
form and is not sensitive to negative values of the underlying WDF, which makes
it extremely attractive for various applications. However, a precaution is needed
when using this quantity in some cases.

A simple but important example of ill behavior is furnished by a MaxEnt
procedure employing Eq. (23) with the constraint appropriate for the microcanon-
ical ensemble:

∫
dpdqρw(p, q) = 1 (cf. Manfredi and Feix, 2000). Namely, the

resulting phase-space distribution which extremize the linear entropy:ρ(p, q) =
const= 1/Ä, whereÄ = vol(suppρ), cannot be regarded as a valid WDF.

The employment of smoothed WDFs may be also problematic, because it
is in general equivalent to arepresentation switchto another phase-space picture
of QM. For example, the usage of Gaussian-smoothed WDFs, which are Husimi
distribution functions, means a representation switch to the Husimi picture, with
all consequences for the derived results.

Therefore, the linear entropy calculated from a smoothed WDF, say a Husimi
distribution function

SH
2 = 1− (2πh)D

∫
0

dpdq(ρH (p, q))2 (25)

is a different quantity on its own right, defined in adistinct (Husimi) phase-
space representation. Notice also that Eq. (25), in contrast to WWM linear en-
tropy Eq. (23), doesnot correspond directly to the linear entropy expression
of Eq. (20).

7. RÉNYI–SÜßMANN ENTROPY

The conventional formulation of the position-momentum uncertainty relation
uses standard deviations of position and momentum observables as uncertainty
measures. A more accurate uncertainty measure, especially in situations when
position and momentum are highly correlated, has been proposed by S¨ußmann
(1997) as

δ[ p, q] ≡ 1∫
0

dpdq[ρw(p, q)]2
(26)
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This quantity represents the effective phase-space volume occupied by the partic-
ular quantum state.

In general,δ[ p, q] ≥ hN , but for any pure state we have always thatδ[ p, q] =
hN , i.e., each pure quantum state is a minimum uncertainty state in the meaning
of the Süßmann phase-space uncertainty measure, occupying effectively a phase-
space volume of the orderhN , like a microstate in statistical termodynamics.

This enables one to define an entropic expression, reflecting the statistical
weight of a quantum state in the phase space:

Sδ = ln
δ[ p, q]

hN
(27)

This quantity, let it call the R´enyi–Süßmann entropy, is manifestly additive
and equal to the WWM transcription of the R´enyi R2 entropy. Its linearization
gives in turn the WWM linear entropy Eq. (23).

8. SUMMARY AND CONCLUSIONS

In this paper, several expressions proposed for quantum entropy were eval-
uated within the WWM phase-space representation of QM. We have shown that
with sufficient precaution, at least some of these entropic expressions may be easily
translated to the WWM picture and succesfully applied in various studies. It has
been also found that the R´enyi–Süßmann entropy and its linearization, the WWM
linear entropy, are distinguished as quantities with a clear physical interpretation
and useful properties.
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